

Taped wires

Polyimide-Film insulated Winding Wires

- Taped round or rectangular winding wires with outstanding thermal properties
- Temperature Index 240

Description

Polyimide-film taped, round or rectangular winding wires, are copper conductors which are wrapped tightly with a Polyimide-tape, coated on one or both sides with a FEP (Teflon®)-adhesive. A suitable heat-treatment melts the thermoplastic FEP-coating and thus bonds firmly the overlapping film. This results in a non-porous, highly flexible insulation of superior thermal and chemical resistance.

The Temperature Index of the insulation is 240.1)

Conductor dimensions

Round copper acc. to IEC 60317-0-1. Rectangular copper acc. to IEC 60317-0-2 as well as any dimension up to 80 mm², with max. width of 20 mm and min. thickness of 0,50 mm. The recommended ratio width/thickness is 10:1 max.

Standards types

From among many possibilities, the most common types are listed below:

Туре	Construction	Increase due to insulation			
FO100	One side FEP-coated Polyimide-film, thickness 0,04 mm 50% overlap	0.15 ± 0.	02 mm		
2FO100	Two one side FEP-coated Polyimide-films, thickness 0,04 mm with 50 $\%$ overlap each	Width Thicknes	0.31 ± 0.03 mm ss 0.30 ± 0.03 mm		
TX200 G2 FO100	Grade 2 enamelled Thermex 200 one side FEP-coated Polyimide-film, thickness 0,04 mm, 50 % overlap	enamel a 0.15 ± 0,	acc. to IEC, 02 mm		
FO140	One side FEP-coated Polyimide-film thickness 0,06 mm, 50 % overlap	0.25 ± 0,	03 mm		
2FO200	Two FEP-coated Polyimide-films	Width	0.39 ± 0.04 mm		
	 layer: both sides coated 0,05 mm thick layer: one side coated 0,04 mm thick with 50 % overlap each 	Thicknes	ss 0.38 ± 0.04 mm		

Water-Resistant Types

In addition to all the excellent characteristics, the newly developed water-resistant Kapton® FWR is able to better restrain the hydrolytic degradation. The dissociation of organic compounds under the influence of elevated temperature in presence of water is considerably minimized by the use of Kapton® FWR.

The optimized properties increase the reliability of electrical machinery under severe conditions and thus open up new perspectives of construction.

All other properties are almost identical with the standard types.

Туре	Construction	Increase due to insulation
FO150	FEP-coated on one side Special Polyimide-film (Kapton $^{\! \rm B}$ FWR) Thickness 0,04 mm, overlap 50 $\%$	0.15 ± 0.02 mm
2FO306	Two one side FEP-coated Special Polyimide-film (Kapton® FWR) Thickness 0,04 mm, overlap 66 % resp. 50 %	Width 0.38 ± 0.04 mm Thickness 0.36 ± 0.04 mm

Corona-Resistant Types

Winding wires insulated with corona-resistant Polyimide-film, have almost the same properties as those of the standard types. But in addition to their excellent properties, this type can withstand the damaging effects of corona. At high voltage, (>1 kV), corona can cause ionization and eventual breakdown of the insulation system. Furthermore, this Polyimide-film has a thermal conductivity that is twice that of standard Kapton®.

These superior properties increase the safe operation of electrical machines and open up new perspectives.

Currently available types:

Type	Construction	Increase	due to insulation			
FO190 FO230	FEP-coated on one side special corona-resistant Polyimide-film, thickness 0,04 mm, overlap 50%	0.15 ± 0.02 mm				
FO192 FO232	FEP-coated on one side special corona-resistant Polyimide-film, thickness 0,04 mm, overlap 53-55 $\%$	0.23 ± 0.	02 mm			
FO193 FO233	FEP-coated on one side special corona-resistant Polyimide-film, thickness 0,04 mm, overlap 66 $\%$	0.23 ± 0.	03 mm			
FO195 FO235	FEP-coated on one side special corona-resistant Polyimide-film, thickness 0,04 mm, overlap 75 $\%$	0.30 ± 0.	03 mm			
2FO190 2FO230	Two FEP-coated on one side special corona-resistant Polyimide-film, thickness 0,04 mm, with overlap 50% each	Width Thicknes	0.32 ± 0.03 mm s 0.30 ± 0.03 mm			

Definition of the type of tape: FO19X Rayitek FCR-38-S

FO23X Kapton® 150FCRC019

Special Conductor Types

In addition to the mentioned rectangular and round copper conductors, the following conductors and dimensions can be taped with the currently available Polyimide-films:

- Enamelled wires round or rectangular
- Nickel-plated copper conductors
- · Cables and Litz wires, bare or enamelled
- Superconductors (Polyimide-film without FEP)

To meet special requirements, overlap and other combinations of insulating materials can be chosen.

Standards

Polyimide-film insulated wires meet the requirements of:

- IEC-Publication 60317-43 for round wires and
- IEC-Publication 60317-44 for rectangular wires

Other national standards: NF C 31 616 E

Wherever applicable, the test methods are based on:

IEC 60851-1	General
IEC 60851-2	Determination of the dimensions
IEC 60851-3	Mechanical properties
IEC 60851-4	Chemical properties
IEC 60851-5	Electrical properties
IEC 60851-6	Thermal properties

Applications

Polyimide-film insulated winding wires are used especially where traditional wire insulations are inadequate. Their superior thermal, mechanical, dielectric and chemical properties allow them to be used extensively for:

Rotor and stator windings of:

- railway traction motors (conductor strands)
- heavy-duty d.c. motors, e.g. rolling mill and roller table drives
- mining machine motors
- · drives for crane installations
- aircraft generators, marine engines, marine generators
- underwater motors
- asynchronous motors subjected to great thermal stress in the chemical and paper industry
- motors exposed to radioactive radiation
- drives for construction machines
- Nuclear industry
- Heavy-duty connection Litz wires / lead wires in motors
- Windings of dry-type transformers and reactance coils exposed to great thermal loading
- · Windings of lifting magnets in steel works
- Stirring coils

Even though Polyimide-film insulated wires are relatively more expensive than wires with traditional insulations, their use often results in lower costs per kW of supplied power. Polyimide-film ensures an improved heat dissipation and a better copper space factor.

Delle Fil SAS F-90100 Delle

Processing Instructions

Because of the excellent adherence of the insulation to the conductor, the low friction properties and mechanical toughness, such insulated wires round or rectangular, can be processed on all common types of coil-winding benches, automatic winding machines and coil-forming devices.

- Single taped rectangular wires may be bent edgewise on a mandrel with diameter as small as 2 x the width of the wire. For flatwise bending, the min. permissible diameter of the mandrel is 3 x the thickness of the wire.
- When forming coils, the use of hard or sharp-edged tools has to be avoid.
- The best method for stripping Polyimide-film insulated wires is the mechanical one, (using hand-cutting tools, or rotary knives for round wires).
- For the impregnation of entire coils and stators, we recommend to use the following impregnating resins, varnishes and protection-overcoats:
 - Polyester-Imide: Damisol 2053 (Repair), 3340 or 3630 MEV (For the Polyester-Imide resin and varnish, we recommend applying Damicoat 2407 as protection overcoat).
 - Epoxy: Damisol 3418 APISilicon: Damisol 3551

Order Data

Quantity, Designation, Supply form

The designation shall comprise:

Profile of the conductor RD for round FL for rectangular

Designation of the insulation FO100 FO100

Nominal dimension in mm 1.25mm

Dimensions (width x thickness) in mm 2.00x8.00mm

Reel type: e.g. DIN 355 e.g. DIN 500

Example for round: 250 kg RD FO100 1.25mm D355

Example for flat: 600 kg FL FO100 2.00x8.00mm D500

Characteristics Wires	of Polyimide Taped	Round				Rectang	jular				
Standards		IEC 60317-	43			IEC 60317-44					
Таре		FEP coated	d Polyimide	Film		FEP coated Polyimide Film					
Dimensions		Available D	Dimensions			Available Dimensions see conductor dimensions on page 1					
	FO100	0.40 5.00	mm Ø		> 1.5 mn	n ²					
	2FO100	0.80 5.00	mm Ø			> 1.5 mn	n ²				
	TX200 G2 FO100	0.40 5.00	mm Ø			> 1.5 mn	n ²				
	FO140	-				> 3.0 mn	n ²				
	2FO200	-				> 3.0 mn	n ²				
	FO150	0.80 5.00	mm Ø			> 6.0 mn	n ²				
	2FO306	-				-					
	FO190 / FO230	0.71 5.00	mm Ø			> 3.0 mm ² > 3.0 mm ²					
	FO192 / FO232	0.71 5.00	mm Ø								
	FO193 / FO233	0.71 5.00	mm Ø			> 3.0 mn	n ²				
	FO195 / FO235	=			> 3.0 mm ²						
	2FO190 / 2FO230	0.80 5.00	mm Ø		> 3.0 mm ²						
Properties of standard types	Test Method	Units	Results for	1.00 mm Ø e.g.		Units Results for Rectangular Wire					
			FO100	2FO100	TX200 G2 FO100		FO100	FO140	2FO200		
Mechanical:											
Elongation	IEC 60851-3, Test 6	%	min. 33	min. 33	min. 33	%	Thickness < 2 Thickness > 2		n. 30 n. 32		
Springback Angle	IEC 60851- 3, Test 7	Deg.	max. 42	max. 42	max. 42	Deg.	Thickness < 1 1.5mm < Thic Thickness > 3	kn.< 3.0 mm	max. 5.5 max. 4.5 max. 4.0		
Flexibility and Adherence	IEC 60851-3, Test 8										
	Mandrel Winding	Mandrel-Ø	3xd	3xd	3xd						
	Adherence by Elongation	%	min. 20	min. 20	min. 20	%	min. 20	min. 20	min. 10		
	Bend Test						cond. < 12 mm cond. > 12 mm				
Electrical:											
Nominal	IEC 60851- 5, Test 5										
Resistance D.C. a 20°C		Ohm/m	0.0218	0.0218	0.0218	Ohm· mm²/m	0.017241	0.017241	0.017241		

Delle Fil SAS F-90100 Delle

Breakdown Voltage	IEC 60851- 5, Test 13	V				V						
	round wire: 3xd coils /	min	3500	6000	6000	min	3500	4000	6000			
	flat wire: straight sample	mean	5500	8000	8000	mean	5500	6000	8000			
	bent edgewise 2xwidth					min	2500	3000	5000			
						mean	3500	4000	6000			
	bent flat wise 3xthickn.					min	2500	3000	5000			
						mean	3500	4000	6000			
Thermal:												
Heat shock	IEC 60851- 6, Test 9	visual	crack free	crack free	crack free	visual	crack free	crack free	crack free			
at 240°C / 30 min.		(mandrel-Ø 3xd) Width of cond. Width of cond.										
Thermoplastic Cut-through	IEC 60851- 6, Test 10	°C	min. 450	min. 450	min. 450							
Thermal Long-t	ime Behaviour											
	IEC 60851- 6, Test 15	TI ¹⁾	240	240	240	TI ¹⁾	240	240	240			
	IEC 60172											
Thermal Resistance		°C	2)	2)	2)	°C	2)	2)	2)			
Resistance to Cold		К	10	10	10	K	10	10	10			
Chemical:												
Saltwater		resistant										
Solvents of Imp	regnating Varnishes	resistant to				Sangajol, Xylene, Solvent Naphtha						
Cleansing Solv	ents	resistant to				Trichloroe	thylene, Perchlo	orethylene				
Mineral oils		resistant										
Hardeners in so Impregnating R		resistant to				Anhydrics						

¹) The Temperature Index is derived from the tests carried out according to IEC 60172. It gives an indication of the behaviour of the wires when exposed to heat, but it does not necessarily equal the service temperature at which the wires can be used.
²) At temperatures above 220°C the formation of CuO/Cu2O takes place in the boundary layer between conductor and insulation causing adherence losses, we therefore suggest the use of Nickel-plated Copper.

Appearance

Slight color variations are raw material or process-related and have no influence on the technical properties of the wire.

Properties of water- and corona-resistant types	Test Method	Units	Results	for 1.00 m	ım Ø e.g.	Units	Results	for Rectanç	gular Wire	,		
			FO150	FO190 FO230	FO193 FO233		FO150	2FO306	FO190 F 230	FO192 FO232	FO195 FO235	2FO190 2FO230
Mechanical:												
Elongation	IEC 60851-3, Test 6	%	min. 33	min. 33	min. 33	%		s <u><</u> 2.5 mm: s > 2.5 mm:				
Spring-back Angle	IEC 60851- 3, Test 7	Deg.	max. 42	max. 42	max. 42	Deg.	Thickness < 1.5 mm: max. 5.5 1.5mm < Thickn.< 3.0 mm: max. 4.5 Thickness > 3.0 mm: max. 4.0					
Flexibility and Adherence	IEC 60851-3, Test 8											
	Mandrel Winding	Mandrel Ø	3xd	3xd	3xd							
	Adherence by Elongation	%	min. 20	min. 20	min. 20	%	min. 20	min. 10	min. 20	min. 20	min. 20	min. 10
	Bend Test	-						f cond. < 12 f cond. > 12				
Electrical:												
Nominal Resistance D.C. at 20°C	IEC 60851- 5, Test 5	Ohm/m	0.0218	0.0218	0.0218	Ohm· mm²/m	0.01724	0.01724	0.01724	0.01724	0.01724	0.01724
Breakdown Voltage	IEC 60851- 5, Test 13	V				V						
	round wire 3xd coils /	min	3500	3000	5000	min	3500	6000	3000	5000	8000	8000
	flat wire straight sample	mean	5500	5000	7000	mean	5500	8000	5000	7000	10000	10000
	bent edgewise 2xwidth					min	2500	5000	2000	4000	6000	6000
						mean	3500	6000	3000	5500	7000	7000
	bent flat wise 3xthickn.					min	2500	5000	2000	4000	6000	6000
						mean	3500	6000	3000	5500	7000	7000
Thermal:												
Heat shock	IEC 60851- 6, Test 9	visual	crack free	crack free	crack free	visual	crack free	crack free	crack free	crack free	crack free	crack free
at 240°C / 30 min			(mandre	el-Ø 3xd)				of cond. < 12 of cond. > 1				
Thermoplastic Cut-through	IEC 60851- 6, Test 10	°C	min. 450	min. 450	min. 450							
Thermal Long-time	Behaviour,											
	IEC 60851- 6, Test 15 IEC 60172	TI ¹⁾	240	240	240	TI ¹⁾	240	240	240	240	240	240
Thermal Resistance		°C	2)	2)	2)	°C	2)	2)	2)	2)	2)	2)

Delle Fil SAS F-90100 Delle

Resistance to Cold	K	10	10	10	K	10	10	10	10	10	10			
Chemical:														
Saltwater	resistant													
Solvents of Impregnating Varnishes	resistant	resistant to					Sangajol, Xylene, Solvent Naphtha							
Cleansing Solvents	resistant	to			Trichloroethylene, Perchlorethylene									
Mineral oils	resistant													
Hardeners in solvent free Impregnating Resins	resistant	to			Anhydri	cs								

¹⁾ The Temperature Index is derived from the tests carried out according to IEC 60172. It gives an indication of the behaviour of the wires when exposed to heat, but it does not necessarily equal the service temperature at which the wires can be used.

The product properties set forth in this data sheet are based on the results of testing of typical material produced by the company Delle Fil SAS. Some variation in product properties is typical. Comments or suggestions relating to any subject other than product properties are offered only to call the end-user's or other person's attention to considerations which may be relevant in the independent determination of the use and/or manner of use of product. Delle Fil SAS does not claim or warrant that the use of its product will have the results described in this data sheet or that the information provided is complete, accurate or useful. The user should test the product to determine its properties and its suitability for the intended use. Delle Fil SAS expressly disclaims any liability for any damage, harm, injury, cost or expense to any person resulting directly or indirectly from that person's reliance on any information contained in this data sheet. Nothing contained in this data sheet constitutes representation or warranty as to any matter whatsoever. Delle Fil SAS makes no warranties whatsoever in this data sheet, expressed or implied, including any implied warranty or fitness for a particular use or purpose. Delle Fil SAS shall in no event be liable for incidental, exemplary, punitive or consequential damages.

²) At temperatures above 220°C the formation of CuO/Cu2O takes place in the boundary layer between conductor and insulation causing adherence losses, we therefore suggest the use of Nickel-plated Copper.